RETAINING WALL :-

Retaining walls are usually built to hold back soil mass. However, retaining walls can also be constructed for aesthetic landscaping purposes.

Gravity retaining wall

Photos of Retaining walls

Classification of Retaining walls :-

- Gravity wall-Masonry or Plain concrete .
- Cantilever retaining wall-RCC (Inverted T and L) .
- Counter fort retaining wall-RCC .
- Buttress wall-RCC .

Classification of Retaining walls

Earth Pressure (P) :-

• Earth pressure is the pressure exerted by the retaining material on the retaining wall. This pressure tends to deflect the wall outward.

- Types of earth pressure:
- Active earth pressure or earth pressure (Pa) and.
- Passive earth pressure (Pp).
- Active earth pressure tends to deflect the wall away from the backfill.

Variation of Earth pressure

Factors affecting earth pressure :-

Earth pressure depends on type of backfill, the height of wall and the soil conditions .

Soil conditions: The different soil conditions are :-

- Dry leveled back fill .
- Moist leveled backfill .
- Submerged leveled backfill .
- Leveled backfill with uniform surcharge .
- Backfill with sloping surface .

Analysis for dry back fills :-

Maximum pressure at any height, p=ka \sqrt{h} Total pressure at any height from top, $a=1/\gamma [ka \sqrt{h}]h = [ka \sqrt{h}]/\gamma$ Bending moment at any height M=paxh/ $\gamma = [ka \sqrt{h}]/\gamma$

Total pressure, $Pa = [ka \sqrt{H^{\gamma}}]/^{\gamma}$ Total Bending moment at bottom,

 $\mathbf{M} = [\mathrm{ka}\; \mathbf{y} \mathbf{H}^{\pmb{\nabla}}]/\pmb{\neg}$

- Where, k_a = Coefficient of active earth pressure
- = $(1-\sin\phi)/(1+\sin\phi)=\tan^2\phi$
- $= 1/k_{p}$ coefficient of passive earth pressure
- φ= Angle of internal friction or angle of repose
- γ=Unit weigh or density of backfill
- If $\phi = 30^\circ$, $k_a = 1/3$ and $k_p = 3$. Thus k_a is 9 times k_p

Backfill with sloping surface

- p_a= k_a γH at the bottom and is parallel to inclined surface of backfill
- $k_a = \cos\theta \left[\frac{\cos\theta \sqrt{\cos^2\theta \cos^2\phi}}{\cos\theta + \sqrt{\cos^2\theta \cos^2\phi}} \right]$ • Where $\theta = \text{Angle of surcharge}$
- ... Total pressure at bottom

$$=P_a = k_a \gamma H^2/2$$

SOIL PRESSURE DUE TO INCLINED SURCHARGE

Stability requirements of RW

- Following conditions must be satisfied for stability of wall (IS:456-2000).
- It should not overturn
- It should not slide
- It should not subside, i.e Max. pressure at the toe should not exceed the safe bearing capacity of the soil under working condition

Design and Detailing of Counter fort Retaining wall :-

- When H exceeds about $\mbox{$\sc n$}$,
- Stem and heel thickness is more.
- More bending and more steel.
- Cantilever-T type-Uneconomical.
- Counter forts-Trapezoidal section.
- \.°m -^wm c/c.

CRW

Parts of CRW

· Same as that of Cantilever Retaining wall Plus Counterfort

Design of Stem :-

- The stem acts as a continuous slab.
- Soil pressure acts as the load on the slab.
- Earth pressure varies linearly over the height .
- The slab deflects away from the earth face between the counter forts .
- The bending moment in the stem is maximum at the base and reduces towards top .
- But the thickness of the wall is kept constant and only the area of steel is reduced.

Maximum Bending moments for stem :-

- Maximum +ve B.M= pl^{γ}
- (occurring mid-way between counter forts)
- and
- Maximum -ve B.M= $pl^{\gamma}/\gamma^{\gamma}$
- (occurring at inner face of counter forts)
- Where 'l' is the clear distance between the counter forts
- and 'p' is the intensity of soil pressure

Design of Toe Slab :-

- The base width= $b = \cdot .7$ H to $\cdot .7$ H.
- The projection=1/r to $1/\xi$ of base width.
- The toe slab is subjected to an upward soil Reaction and is designed as a cantilever slab fixed at the front face of the stem.
- Reinforcement is provided on earth face along . the length of the toe slab.
- In case the toe slab projection is large i.e. > b/\(\vec{r}\), front counter forts are provided above the toe slab and the slab is designed as a continuous horizontal slab spanning between the front counter forts.

Design of Heel Slab :-

- The heel slab is designed as a continuous slab
- spanning over the counter forts and is subjected
- to downward forces due to weight of soil plus self
- weight of slab and an upward force due to soil reaction.
- Maximum +ve $B.M = pl^{\gamma/\gamma}$.
- (mid-way between counter forts).
- And
- Maximum -ve $B.M = pl^{\gamma/\gamma \gamma}$.
- (occurring at counter forts).

Design of Counter forts :-

- The counter forts are subjected to outward reaction from the stem.
- This produces tension along the outer sloping face of the counter forts.
- The inner face supporting the stem is in compression Thus counter forts are designed as a T-beam of varying depth
- The main steel provided along the sloping face shall be anchored properly at both ends.
- The depth of the counter fort is measured perpendicular to the sloping side.

Important points

- Loads on Wall
- Deflected shape
- Nature of BMs
- Position of steel
- Counterfort details